The STEM to STEAM movement has evolved over the past several years and is advancing as a methodology to meet the needs of students in the 21st century.
Nancy Tsupros of Washington and Jefferson College defines STEM education as an interdisciplinary approach to learning. She writes that in STEM, rigorous academic concepts are coupled with real-world lessons in science, technology, engineering, and mathematics in contexts that make connections between school, community, work and global enterprise.
STEAM adds the arts. It is an inquiry-based, project-based instructional approach offered in real-world contexts where students generate strategies and products that meet defined, standards-based outcomes. STEAM lessons allow educators to choose from a variety of lessons to find ones they can most easily adapt for their students.
“We dare our students to be wrong, to try multiple ideas, listen to alternate opinions and create a knowledge base that is applicable to real life as opposed to simply an exam,” says Deron Cameron, the former principal of University Place Elementary School in Tuscaloosa, Alabama. His school was the first in the U.S. to be STEAM certified. Learn more at steamedu.com.
A variety of apps are available that support a STEAM approach to instruction.
Screencastify
Screencastify is an extension for Google Chrome. It allows you to record your screen activity for creating tutorials, on-line lessons, and runs entirely in Chrome. It is useful for flipped classrooms, class projects, and compatible with EDpuzzle. You’ll find it at www.screencastify.com.
EDPuzzle
EDpuzzle allows teachers to create lessons by importing videos from anywhere on the internet, cropping if necessary to select only relevant content. Teachers can add their own voices to the video and insert questions that students must answer before continuing. A spreadsheet of results makes it easy to review which students have completed the assignment and how they did on the quiz questions. Go to edpuzzle.com.
SketchUp
SketchUp is a site for learning 3-D modeling software, including Youtube tutorials. While the site can be challenging, it’s well worth the effort. It is ideal for architectural plans, theater set design, and more. Visit www.sketchup.com.
Build with Chrome
Build with Chrome enables every student to become an engineer, while using virtual Legos in a 3-D space. Choose a brick, rotate it as needed, place the brick on a Lego board. This simple approach allows the teacher to give each student the chance to create something in a three dimensional space while looking at a two dimensional screen. Start building at www.buildwithchrome.com.
Scratch
This coding tutorial site allows users to create, build, collaborate, try, fail, try again and succeed. Students can produce their own projects, animations, games, music, stories and more, sharing around the world if they choose. By snapping blocks together to construct projects, students learn to think creatively, reason systematically and work collaboratively. (scratch.mit.edu)
goREACT
Become a virtual chemist by dragging elements from the periodic table to the reaction area. This app includes suggested reactions to help students get started. There are nearly 300 chemical reactions supported on the app. Find this virtual chemistry set at goreact.com.
Elements 4D
This app is part educational story and part game. Great for an introduction to chemistry, where students take two molecules, touch them together, and see the new compound. It is a fun way to learn about real-life chemistry. Visit elements4d.daqri.com.
Photomath
This app takes a picture of an equation using a smartphone camera and provides a solution with the steps for solving it. Recently added is the ability to read handwritten equations as well as a smart calculator that students can use to manually edit equations. Find solutions at photomath.net/en/.
CyArk
CyARK is a nonprofit organization whose mission is to use new technologies to create a free 3-D online library of the world’s cultural heritage. There are 53 topics with full lesson plans that incorporate famous structures, with a variety of STEAM activities, from around the world. Start exploring at www.cyark.org/education.
All students benefit from STEM and STEAM programs because they teach independent innovation and allow students to explore greater depths of all of the subjects by utilizing the skills learned.
The NJEA Technology Committee
The NJEA Technology Committee is one of over 50 NJEA committees made up of NJEA members. It is charged with the following responsibilities:
• Study the impact of technology on educational programs.
• Review technology curricula proposals and initiatives for educational appropriateness.
• Review state-supported funding proposals and make recommendations for funding improvements to provide the equipment, personnel, programs, and training necessary to institute all aspects of technology education.
• Educate NJEA members, legislators, and policymakers about the varied components of technology education.
• Recommend the types of programs needed in every school district to ensure students become technologically literate.
• Develop and initiate training opportunities for school personnel.
Committee members:
Committee Chair: Virginia Hoden, Ocean County
Jane Armellino, Hunterdon County
Diego Alvear, Union County
Stephen Bouchard, Atlantic County (retired)
Christopher Bowman, Burlington County
Pamela Burnell, Atlantic County
Gerard Carroll, Bergen County
Sabina Ellis, Essex County
Gregory Filipski, Somerset County
Olive Giles, Mercer County
Jessica Hoertel, Morris County
Brian McLaughlin, Monmouth County
Keith Presty, Middlesex County
Karen Schwing, Ocean County
Jasmine Slowik, Warren County
Julie Stratton, Cape May County
Bethany Weber, Salem County
Stephen Whitehead, Gloucester County
The NJEA staff contact to the committee is Darryl Ensminger, associate director, Professional Development and Instructional Issues.
Dr. Joy Barnes-Johnson, a teacher at Princeton High School, also contributed to this article.